p90 ribosomal S6 kinase 2 exerts a tonic brake on G protein-coupled receptor signaling.
نویسندگان
چکیده
G protein-coupled receptors (GPCRs) are essential for normal central CNS function and represent the proximal site(s) of action for most neurotransmitters and many therapeutic drugs, including typical and atypical antipsychotic drugs. Similarly, protein kinases mediate many of the downstream actions for both ionotropic and metabotropic receptors. We report here that genetic deletion of p90 ribosomal S6 kinase 2 (RSK2) potentiates GPCR signaling. Initial studies of 5-hydroxytryptamine (5-HT)(2A) receptor signaling in fibroblasts obtained from RSK2 wild-type (+/+) and knockout (-/-) mice showed that 5-HT(2A) receptor-mediated phosphoinositide hydrolysis and both basal and 5-HT-stimulated extracellular signal-regulated kinase 1/2 phosphorylation are augmented in RSK2 knockout fibroblasts. Endogenous signaling by other GPCRs, including P2Y-purinergic, PAR-1-thrombinergic, beta1-adrenergic, and bradykinin-B receptors, was also potentiated in RSK2-deficient fibroblasts. Importantly, reintroduction of RSK2 into RSK2-/- fibroblasts normalized signaling, thus demonstrating that RSK2 apparently modulates GPCR signaling by exerting a "tonic brake" on GPCR signal transduction. Our results imply the existence of a novel pathway regulating GPCR signaling, modulated by downstream members of the extracellular signal-related kinase/mitogen-activated protein kinase cascade. The loss of RSK2 activity in humans leads to Coffin-Lowry syndrome, which is manifested by mental retardation, growth deficits, skeletal deformations, and psychosis. Because RSK2-inactivating mutations in humans lead to Coffin-Lowry syndrome, our results imply that alterations in GPCR signaling may account for some of its clinical manifestations.
منابع مشابه
Genetic deletion of p90 ribosomal S6 kinase 2 alters patterns of 5-hydroxytryptamine 2A serotonin receptor functional selectivity.
The concept of functional selectivity has now thoroughly supplanted the previously entrenched notion of intrinsic efficacy by explaining how agonists and antagonists exhibit a range of efficacies for distinct receptor-mediated responses. It is noteworthy that functional selectivity accommodates significant changes in efficacy resulting from differential expression of G protein-coupled receptor ...
متن کاملQuantitative phosphorylation profiling of the ERK/p90 ribosomal S6 kinase-signaling cassette and its targets, the tuberous sclerosis tumor suppressors.
Reversible protein phosphorylation is an essential cellular regulatory mechanism. Many proteins integrate and are modulated by multiple phosphorylation events derived from complex signaling cues. Simultaneous detection and quantification of temporal changes in all of a protein's phosphorylation sites could provide not only an immediate assessment of a known biochemical activity but also importa...
متن کاملAltered extracellular signal-regulated kinase signaling and glycogen metabolism in skeletal muscle from p90 ribosomal S6 kinase 2 knockout mice.
The p90 ribosomal S6 kinase (RSK), a cytosolic substrate for the extracellular signal-regulated kinase (ERK), is involved in transcriptional regulation, and one isoform (RSK2) has been implicated in the activation of glycogen synthase by insulin. To determine RSK2 function in vivo, mice lacking a functional rsk2 gene were generated and studied in response to insulin and exercise, two potent sti...
متن کاملFunctionally opposing roles of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase in the regulation of cardiac contractility.
BACKGROUND Extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (p38-MAPK) have been shown to regulate various cellular processes, including cell growth, proliferation, and apoptosis in the heart. However, the function of these signaling pathways in the control of cardiac contractility is unclear. Here, we characterized the contribution of ERK1/2 and p38-M...
متن کاملExercise Stimulates Mitogen-activated Protein Kinase in Skeletal Muscle
Physical exercise can cause marked alterations in the structure and function of human skeletal muscle. However, little is known about the specific signaling molecules and pathways that enable exercise to modulate cellular processes in skeletal muscle. The mitogen-activated protein kinase (MAPK) cascade is a major signaling system by which cells transduce extracellular signals into intracellular...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 103 12 شماره
صفحات -
تاریخ انتشار 2006